US009317703B2

a2 United States Patent

Clayton et al.

US 9,317,703 B2
*Apr. 19, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

ENHANCED SECURITY SETUP FOR MEDIA
ENCRYPTION
Applicant: Unisys Corporation, Blue Bell, PA (US)

Kevin Clayton, Irvine, CA (US); Peter
Wilkes, Irvine, CA (US)

Inventors:

Assignee: Unisys Corporation, Blue Bell, PA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 122 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/190,207

Filed: Feb. 26, 2014

Prior Publication Data

US 2015/0244526 Al Aug. 27, 2015

Int. Cl1.
GO6F 21/60
GO6F 9/455
GO6F 21/12
U.S. CL
CPC

(2013.01)
(2006.01)
(2013.01)

.............. GO6F 21/602 (2013.01); GO6F 9/455
(2013.01); GO6F 21/121 (2013.01); HO4L
2209/125 (2013.01)
Field of Classification Search
None
See application file for complete search history.

200

(56) References Cited
U.S. PATENT DOCUMENTS
6,247,041 B1* 6/2001 Kruegeretal. ... 718/104
6,286,052 B1* 9/2001 McCloghrie et al. ... 709/238
6,836,888 B1* 12/2004 Basuetal. 718/104
7,644,369 B2* 1/2010 Hoe-Richardson . .. 715/768
7,877,378 B2* 1/2011 Graycccoceovevvennnn. 707/718
2002/0144244 Al* 10/2002 Krishnaiyer et al. .. 717/140
2006/0248080 ALl™* 112006 Graycceneveenen. 707/7

* cited by examiner

Primary Examiner — Benjamin Lanier
(74) Attorney, Agent, or Firm — Robert P. Marley

(57) ABSTRACT

Systems and methods for enhanced security of media are
provided. Media security may be enhanced by improving the
setup of encryption and/or decryption, by improving the per-
formance of encryption and/or decryption, or by improving
both. The calls related to enhanced security of media from an
application in an emulated environment to a security module
in the operating system hosting the emulated environment
may be combined to reduce the overhead of accessing a
security module. An application handling secure shell (SSH)
communications may execute multiple calls to a crypto-
graphic module in the host operating system. Because many
calls to the cryptographic module during SSH communica-
tions follow patterns, two or more related calls may be com-
bined into a single combined call to the cryptographic mod-
ule. For example, a call to generate a server-to-client key and
acall to generate a client-to-server key may be combined into
a single call.

20 Claims, 7 Drawing Sheets

RECEIVE A FIRST CALL TO A MODULE
LOCATED QUTSIDE
ENVIRONMENT

I~
MULATED 202

Y

DELAY EXECUTION OF THE FIRST CALL

204

Y

RECEIVE A SECOND CALL TO THE MODULE

206

Yy

COMBINE THE FIRST CALL AND THE SECOND
CALL

[\ 208

A 4

EXECUTE THE COMBINED CALL

M-210

U.S. Patent Apr. 19,2016 Sheet 1 of 7 US 9,317,703 B2

104

APPLICATION 110
— ’ 108
INTERFACE L 106a
EMULATED ENVIRONMENT T
INTERFACE 106D
MODULES T 104
OPERATING SYSTEM (0/S) |
102

FIG. 1
(PRIOR ART)

U.S. Patent Apr. 19,2016 Sheet 2 of 7 US 9,317,703 B2

200
RECEIVE A FIRST CALL TO A MODULE 202
LOCATED QUTSIDE A EMULATED -
ENVIRONMENT
r YR T - /\/204
DELAY EXECUTION OF THE FIRST CALL
M\~ 206

RECEIVE ASECOND CALL TO THE MODULE

l

COMBINE THE FIRST CALL AND THE SECOND M\~208
CALL

'

EXECUTE THE COMBINED CALL

MN\-210

FIG. 2

U.S. Patent

31

360

Apr. 19, 2016 Sheet 3 of 7 US 9,317,703 B2

PROVIDE AN INTERFACE FOR AN o 302
APPLICATION IN AN EMULATED
ENVIRONMENT TO ACCESS AMODULE IN A
HOST OPERATING SYSTEM

— e e e —— e — — — I

RECEIVE AN INPUT PARAMETER ATTHE \~304

APPLICATION :
Lo hemeeadm o
T
|
\

> IDENTIFY TWO OR MORE RELATED CALLS TO 306

THE MODULE

l

COMBINE THE TWO OR MORE RELATED M\ 308
CALLS INTO A SINGLE CALL

l

EXECUTE THE SINGLE COMBINED CALL

FIG. 3

U.S. Patent Apr. 19,2016 Sheet 4 of 7

4008

US 9,317,703 B2

| APPLICATION

EMULATED ENVIRONMENT

McpSSHSeUpCiphers AndM \ 4064
cpassaHactUpphers “es
T cthy il_ms ndMacs | o
Interface
406b
McepSSHEncrypiAndMac e
—> by e BEEE——
Interface
406c N7 —car eI ad ¥ ov AndCeri Seata
> f‘vibprHSE\,&HObtKL}yAJdLL[ﬁLiL&R
interface
4

CRYPTOGRAPHIC MODULE

OPERATING SYSTEM ((/8)

410

L 408

N— 404

N\-402

FIG. 4

U.S. Patent Apr. 19,2016 Sheet 5 of 7 US 9,317,703 B2

500
| APPLICATION H~L 510
A
EMULATED ENVIRONMENT
\ 306a
—> interface i
. 3(6b
—> Interface [——
5060c N
- Taterface —
A 4
CRYPTOGRAPHIC MODULE If\, 504
OPERATING SYSTEM ({I/8) 5072

FIG. 5

U.S. Patent Apr. 19,2016 Sheet 6 of 7 US 9,317,703 B2

600
(Eij:f; P Server Network USC;) Im_@rface
. (31 =1¢ Y > - T
i 602 608 evice
A
A 4

Data Storage

606

FIG. 6

U.S. Patent

Apr.

19, 2016 Sheet 7 of 7

Data Storage

712

US 9,317,703 B2

CPU
702

ROM
706

I/ Adapter
yaiy

Conununications
Adapter
714

704

User Interface
Adapter
716

Diisplay
Adapter

......

FIG. 7

US 9,317,703 B2

1
ENHANCED SECURITY SETUP FOR MEDIA
ENCRYPTION

The instant disclosure relates to emulated environments.
More specifically, this disclosure relates to communications
between the emulated environment and the host operating
system to enhance security for media encryption and decryp-
tion.

BACKGROUND

The art of cryptanalysis has gradually become more
sophisticated over time, and is beginning to pose a serious
threat to the security of information. As a consequence, con-
ventional systems for media encryption and decryption that
have not progressed equally as fast as cryptanalysis have
become more susceptible to security breaches. Security may
be threatened at any level in a network, from the encryption,
decryption and transfer of data, to the setup of an encryption
or decryption scheme, to the applications executing in an
emulated environment that make calls to security modules
that perform security-related tasks. To combat the advances
made by cryptanalysis, improvements in security and perfor-
mance at every level are necessary.

One example of performance deficiencies is illustrated
with reference to applications executing in an emulated envi-
ronment that access modules in a host operating system
through an interface. FIG. 1 is a block diagram illustrating a
conventional application executing in a host operating sys-
tem. An application 110 executes inside an emulated environ-
ment 108. To perform certain functions, such as when func-
tions are performed in hardware, the emulated environment
108 accesses modules 104 in the host operating system 102
through an interface 106, including an interface component
1064 in the emulated environment 108 and an interface com-
ponent 1065 in the operating system 102. The interface 106
provides translation services and acts as an intermediary
between the emulated environment 108 and the modules 104
of the host operating system 102. The interface 1064 in the
emulated environment 108 communicates with the cooperat-
ing interface 1064 in the operating system 102. The cooper-
ating interface 1065 in the operating system 102 then makes
the calls on the modules 104.

Calls from the application 110 to the module 104, such as
calls to setup encryption/decryption schemes or to encrypt/
decrypt data, are costly in terms of execution speed and
memory overhead, because of translation of the data to/from
the format needed by the operating system 102 and to actually
move the data from the emulated environment 108 to the
modules 104. The increased delay and overhead in accessing
the modules 104 through the interface 106 with each call can
degrade performance of the application 110 within the emu-
lated environment 108 and can cause the application 110 to
become vulnerable to advanced security threats. Thus, in
addition to improving media encryption/decryption security
as discussed above, there is a need to reduce use of the
interface 106 to improve performance and security of the
application 110.

SUMMARY

According to one embodiment, a method for setting up
secure media encryption in one call may include providing an
interface for an application executing in an emulated environ-
ment of a host operating system, in which the application
accesses a security module in the host operating system
through calls to the interface. The method may further include

10

15

20

25

30

35

40

45

50

55

60

65

2

identifying two or more related calls, from the application to
the module, for setting up secure media encryption, in which
the two or more related calls comprise at least two of a call to
create a cryptography context, a call to randomly generate an
encryption key, a call to compute a hash subkey, a call to store
the computed hash subkey in the cryptography context, a call
to compute an initialization vector, and a call to create a cipher
instance, in which a cipher instance initialization vector is
initialized to the computed initialization vector. The method
may also include combining the two or more related calls into
a single call, and executing the single combined call to the
module of the host operating system to perform the two or
more related calls.

According to another embodiment, a computer program
product for setting up secure media encryption in one call
may include a non-transitory computer-readable medium.
The medium may include code to provide an interface for an
application executing in an emulated environment of a host
operating system, in which the application accesses a security
module in the host operating system through calls to the
interface. The medium may further include code to identify
two or more related calls, from the application to the module,
for setting up secure media encryption, in which the two or
more related calls comprise at least two of a call to create a
cryptography context, a call to randomly generate an encryp-
tion key, a call to compute a hash subkey, a call to store the
computed hash subkey in the cryptography context, a call to
compute an initialization vector, and a call to create a cipher
instance, in which a cipher instance initialization vector is
initialized to the computed initialization vector. The medium
may also include code to combine the two or more related
calls into a single call, and code to execute the single com-
bined call to the module of the host operating system to
perform the two or more related calls.

According to yet another embodiment, an apparatus for
setting up secure media encryption in one call includes a
processor and a memory coupled to the processor. The pro-
cessor may be configured to provide an interface for an appli-
cation executing in an emulated environment of a host oper-
ating system, in which the application accesses a security
module in the host operating system through calls to the
interface. The processor may be further configured to identify
two or more related calls, from the application to the module,
for setting up secure media encryption, in which the two or
more related calls comprise at least two of a call to create a
cryptography context, a call to randomly generate an encryp-
tion key, a call to compute a hash subkey, a call to store the
computed hash subkey in the cryptography context, a call to
compute an initialization vector, and a call to create a cipher
instance, in which a cipher instance initialization vector is
initialized to the computed initialization vector. The proces-
sor may also be configured to combine the two or more related
calls into a single call, and to execute the single combined call
to the module of the host operating system to perform the two
or more related calls.

According to a further embodiment, a method for setting
up secure media encryption in one call includes providing an
interface for an application executing in an emulated environ-
ment of a host operating system, in which the application
accesses a security module in the host operating system
through calls to the interface. The method may also include
identifying two or more related calls, from the application to
the module, for setting up secure media encryption, in which
the two or more related calls comprise at least two of a call to
create a cryptography context, a call to randomly generate an
encryption key, a call to compute a hash subkey, a call to
create an advanced encryption standard in Galois Counter

US 9,317,703 B2

3

Mode (AES-GCM) cipher instance, and a call to store the
AES-GCM cipher instance and the computed hash subkey in
the cryptography context. The method may further include
combining the two or more related calls into a single call, and
executing the single combined call to the module of the host
operating system to perform the two or more related calls.

According to another embodiment, an apparatus for setting
up secure media encryption in one call includes a processor
and a memory coupled to the processor. The processor may be
configured to provide an interface for an application execut-
ing in an emulated environment of a host operating system, in
which the application accesses a security module in the host
operating system through calls to the interface. The processor
may also be configured to identify two or more related calls,
from the application to the module, for setting up secure
media encryption, in which the two or more related calls
comprise at least two of a call to create a cryptography con-
text, a call to randomly generate an encryption key, a call to
compute a hash subkey, a call to create an advanced encryp-
tion standard in Galois Counter Mode (AES-GCM) cipher
instance, and a call to store the AES-GCM cipher instance and
the computed hash subkey in the cryptography context. The
processor may be further configured to combine the two or
more related calls into a single call, and to execute the single
combined call to the module of the host operating system to
perform the two or more related calls.

According to yet another embodiment, a computer pro-
gram product for setting up secure media encryption in one
call includes a non-transitory computer-readable medium.
The medium may include code to provide an interface for an
application executing in an emulated environment of a host
operating system, in which the application accesses a security
module in the host operating system through calls to the
interface. The medium may also include code to identity two
or more related calls, from the application to the module, for
setting up secure media encryption, in which the two or more
related calls comprise at least two of a call to create a cryp-
tography context, a call to randomly generate an encryption
key, a call to compute a hash subkey, a call to create an
advanced encryption standard in Galois Counter Mode (AES-
GCM) cipher instance, and a call to store the AES-GCM
cipher instance and the computed hash subkey in the cryp-
tography context. The medium may further include code to
combine the two or more related calls into a single call, and to
execute the single combined call to the module of the host
operating system to perform the two or more related calls.

According to an embodiment, a method for setting up
secure media decryption in one call may include providing an
interface for an application executing in an emulated environ-
ment of a host operating system, in which the application
accesses a security module in the host operating system
through calls to the interface. The method may further include
identifying two or more related calls, from the application to
the module, for setting up secure media decryption, in which
the two or more related calls comprise at least two of a call to
create a cryptography context, a call to decrypt an encrypted
binary large object (BLOB) using a machine key to obtain an
encryption key from the decrypted BLOB, a call to compute
an initialization vector, a call to create a cipher instance, and
a call to set an encryption key associated with the cipher
instance to the obtained encryption key from the decrypted
BLOB and an initialization vector associated with the cipher
instance to the computed initialization vector. The method
may also include combining the two or more related calls into
a single call, and executing the single combined call to the
module of the host operating system to perform the two or
more related calls.

10

15

20

25

30

35

40

45

50

55

60

65

4

According to another embodiment, a computer program
product for setting up secure media decryption in one call
may include a non-transitory computer-readable medium.
The medium may include code to provide an interface for an
application executing in an emulated environment of a host
operating system, in which the application accesses a security
module in the host operating system through calls to the
interface. The medium may further include code to identify
two or more related calls, from the application to the module,
for setting up secure media decryption, in which the two or
more related calls comprise at least two of a call to create a
cryptography context, a call to decrypt an encrypted binary
large object (BLOB) using a machine key to obtain an encryp-
tion key from the decrypted BLOB, a call to compute an
initialization vector, a call to create a cipher instance, and a
call to set an encryption key associated with the cipher
instance to the obtained encryption key from the decrypted
BLOB and an initialization vector associated with the cipher
instance to the computed initialization vector. The medium
may also include code to combine the two or more related
calls into a single call, and code to execute the single com-
bined call to the module of the host operating system to
perform the two or more related calls.

According to yet another embodiment, an apparatus for
setting up secure media decryption in one call includes a
processor and a memory coupled to the processor. The pro-
cessor may be configured to provide an interface for an appli-
cation executing in an emulated environment of a host oper-
ating system, in which the application accesses a security
module in the host operating system through calls to the
interface. The processor may be further configured to identify
two or more related calls, from the application to the module,
for setting up secure media decryption, in which the two or
more related calls comprise at least two of a call to create a
cryptography context, a call to decrypt an encrypted binary
large object (BLOB) using a machine key to obtain an encryp-
tion key from the decrypted BLOB, a call to compute an
initialization vector, a call to create a cipher instance, and a
call to set an encryption key associated with the cipher
instance to the obtained encryption key from the decrypted
BLOB and an initialization vector associated with the cipher
instance to the computed initialization vector. The processor
may also be configured to combine the two or more related
calls into a single call, and to execute the single combined call
to the module of the host operating system to perform the two
or more related calls.

In an embodiment, a method for secure media encryption
in one call may include providing an interface for an appli-
cation executing in an emulated environment of a host oper-
ating system, in which the application accesses a security
module in the host operating system through calls to the
interface. The method may further include identifying two or
more related calls, from the application to the module, for
secure media encryption, in which the two or more related
calls comprise at least two of a call to randomly generate an
initialization vector, a call to compute an encryption of data,
a call to format a binary large object (BLOB), and a call to
write the BLOB to the media. The method may also include
combining the two or more related calls into a single call, and
executing the single combined call to the module of the host
operating system to perform the two or more related calls.

In a further embodiment, a computer program product for
secure media encryption in one call may include a non-tran-
sitory computer-readable medium. The medium may include
code to provide an interface for an application executing in an
emulated environment of a host operating system, in which
the application accesses a security module in the host oper-

US 9,317,703 B2

5

ating system through calls to the interface. The medium may
further include code to identify two or more related calls,
from the application to the module, for secure media encryp-
tion, in which the two or more related calls comprise at least
two of a call to randomly generate an initialization vector, a
call to compute an encryption of data, a call to format a binary
large object (BLOB), and a call to write the BLOB to the
media. The medium may also include code to combine the
two or more related calls into a single call, and code to execute
the single combined call to the module of the host operating
system to perform the two or more related calls.

In another embodiment, an apparatus for secure media
encryption in one call includes a processor and a memory
coupled to the processor. The processor may be configured to
provide an interface for an application executing in an emu-
lated environment of a host operating system, in which the
application accesses a security module in the host operating
system through calls to the interface. The processor may be
further configured to identify two or more related calls, from
the application to the module, for secure media encryption, in
which the two or more related calls comprise at least two of a
call to randomly generate an initialization vector, a call to
compute an encryption of data, a call to format a binary large
object (BLOB), and a call to write the BLOB to the media.
The processor may also be configured to combine the two or
more related calls into a single call, and to execute the single
combined call to the module of the host operating system to
perform the two or more related calls.

According to a further embodiment, a method for secure
media decryption in one call may include providing an inter-
face for an application executing in an emulated environment
of'a host operating system, in which the application accesses
a security module in the host operating system through calls
to the interface. The method may further include identifying
two or more related calls, from the application to the module,
for secure media decryption, in which the two or more related
calls comprise at least two of a call to verify an encryption
cipher used to encrypt data, a call to verify a hash associated
with the encryption of the data, a tag value associated with the
encryption of the data, and an initialization vector, and a call
to decrypt the data using a decryption cipher. The method may
also include combining the two or more related calls into a
single call, and executing the single combined call to the
module of the host operating system to perform the two or
more related calls.

According to another embodiment, a computer program
product for secure media decryption in one call may include
a non-transitory computer-readable medium. The medium
may include code to provide an interface for an application
executing in an emulated environment of a host operating
system, in which the application accesses a security module
in the host operating system through calls to the interface. The
medium may further include code to identify two or more
related calls, from the application to the module, for secure
media decryption, in which the two or more related calls
comprise at least two of a call to verify an encryption cipher
used to encrypt data, a call to verify a hash associated with the
encryption of the data, a tag value associated with the encryp-
tion of the data, and an initialization vector, and a call to
decrypt the data using a decryption cipher. The medium may
also include code to combine the two or more related calls
into a single call, and code to execute the single combined call
to the module of the host operating system to perform the two
or more related calls.

According to yet another embodiment, an apparatus for
secure media decryption in one call includes a processor and
a memory coupled to the processor. The processor may be

10

15

20

25

30

35

40

45

50

55

60

65

6

configured to provide an interface for an application execut-
ing in an emulated environment of a host operating system, in
which the application accesses a security module in the host
operating system through calls to the interface. The processor
may be further configured to identify two or more related
calls, from the application to the module, for secure media
decryption, in which the two or more related calls comprise at
least two of a call to verify an encryption cipher used to
encrypt data, a call to verify a hash associated with the
encryption of the data, a tag value associated with the encryp-
tion of the data, and an initialization vector, and a call to
decryptthe datausing a decryption cipher. The processor may
also be configured to combine the two or more related calls
into a single call, and to execute the single combined call to
the module of the host operating system to perform the two or
more related calls.

According to one embodiment, a method for providing
secure communications to an application in an emulated envi-
ronment may include providing an interface for an applica-
tion executing in an emulated environment of a host operating
system, in which the application accesses a security module
in the host operating system through calls to the interface. The
method may also include identifying two or more related calls
from the application to the module for processing data during
secure shell communications. The two or more related calls
may include at least one of a call to a CreateHash function, a
call to a HashData function, and a call to a GetHashValue
function. The method may further include combining the two
or more related calls into a single call. The method may also
include executing a single combined call to the module of the
host operating system to perform the two or more related
calls.

According to another embodiment, a computer program
product for providing secure communications to an applica-
tion in an emulated environment having a non-transitory
computer-readable medium includes code to provide an inter-
face for an application executing in an emulated environment
of'a host operating system, in which the application accesses
a module in the host operating system through calls to the
interface. The medium also includes code to identify two or
more related calls from the application to the module for
processing data during secure shell communications. The two
or more related calls may include at least one of a call to a
CreateHash function, a call to a HashData function, and a call
to a GetHashValue function. The medium further includes
code to combine the two or more related calls into a single
call. The medium also includes code to execute a single
combined call to the module of the host operating system to
perform the two or more related calls.

According to yet another embodiment, an apparatus for
providing secure communications to an application in an
emulated environment includes a processor and a memory
coupled to the processor. The processor is configured to pro-
vide an interface for an application executing in an emulated
environment of a host operating system, in which the appli-
cationaccesses a module in the host operating system through
calls to the interface. The processor is further configured to
identify two or more related calls from the application to the
module for processing data in secure shell communications.
The two or more related calls may include at least one of'a call
to a CreateHash function, a call to a HashData function, and
a call to a GetHashValue function. The processor is also
configured to combine the two or more related calls into a
single call. The processor is further configured to execute a
single combined call to the module of the host operating
system to perform the two or more related calls.

US 9,317,703 B2

7

According to a further embodiment, a method for provid-
ing secure communications to an application in an emulated
environment includes receiving a first call to a module located
outside an emulated environment for processing data during a
secure shell session. The method also includes receiving a
second call to the module located outside the emulated envi-
ronment for processing data during the secure shell session.
The method further includes combining the first call and the
second call in a combined call. The method also includes
executing the combined call to the module located outside the
emulated environment.

According to another embodiment, an apparatus for pro-
viding secure communications to an application in an emu-
lated environment includes a host operating system including
at least one module. The apparatus also includes an emulated
environment executing in the host operating system. The
apparatus further includes an interface between the emulated
environment and the module. The interface translates calls
from an application in the emulated environment to calls to
the module in the host operating system. The interface com-
bines a first call and a second call from the application into a
single combined call to the module.

According to yet another embodiment, a computer pro-
gram product for providing secure communications to an
application in an emulated environment has a non-transitory
computer-readable medium including code to process secure
shell communications. The medium also includes code to
receive a first call to a module located outside an emulated
environment. The medium also includes code to receive a
second call to the module located outside the emulated envi-
ronment. The medium further includes code to combine the
first call and the second call in a combined call. The medium
also includes code to execute the combined call to the module
located outside the emulated environment.

The foregoing has outlined rather broadly the features and
technical advantages of the present disclosure in order that the
detailed description of the disclosure that follows may be
better understood. Additional features and advantages of the
disclosure will be described hereinafter which form the sub-
jectofthe claims of the disclosure. It should be appreciated by
those skilled in the art that the conception and specific
embodiment disclosed may be readily utilized as a basis for
modifying or designing other structures for carrying out the
same purposes of the present disclosure. It should also be
realized by those skilled in the art that such equivalent con-
structions do not depart from the spirit and scope of the
disclosure as set forth in the appended claims. The novel
features which are believed to be characteristic of the disclo-
sure, both as to its organization and method of operation,
together with further objects and advantages will be better
understood from the following description when considered
in connection with the accompanying figures. It is to be
expressly understood, however, that each of the figures is
provided for the purpose of illustration and description only
and is not intended as a definition of the limits of the present
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

For amore complete understanding of the disclosed system
and methods, reference is now made to the following descrip-
tions taken in conjunction with the accompanying drawings.

FIG. 1is a block diagram illustrating a conventional appli-
cation executing in a host operating system.

FIG. 2 is a flow chart illustrating an exemplary method for
combining calls to modules through an interface according to
one embodiment of the disclosure.

10

20

25

30

40

45

55

60

8

FIG. 3 is a flow chart illustrating an exemplary method for
combining calls to modules through an interface according to
another embodiment of the disclosure.

FIG. 4 is a block diagram illustrating multiple interfaces to
a cryptographic module for combining calls according to one
embodiment of the disclosure.

FIG. 5 is a block diagram illustrating more interfaces to a
cryptographic module for combining calls according to one
embodiment of the disclosure.

FIG. 6 is block diagram illustrating a computer network
according to one embodiment of the disclosure.

FIG. 7 is a block diagram illustrating a computer system
according to one embodiment of the disclosure.

DETAILED DESCRIPTION

Security of media encryption and decryption may be
enhanced by using a different initialization vector to encrypt/
decrypt distinct sets of input data, such as distinct files
encrypted to and decrypted from tape, CD, DVD, and the like.
Security may also be enhanced by using a different initializa-
tion vector for distinct types of media, such as tape, CD,
DVD, and the like. In some embodiments, the enhanced secu-
rity of media encryption and decryption may be set up or
performed with calls to a security module from an applica-
tion.

Performance of an application in an emulated environment
may be improved by reducing the number of calls to modules
within a host operating system that the application accesses
through an interface. Reducing the number of calls to the
modules reduces the amount of delay experience by the appli-
cation as a result of the interface. Thus, application perfor-
mance may be improved. According to one embodiment, the
number of calls to the modules of a host operating system may
be reduced by combining calls for related functions.

FIG. 2 is a flow chart illustrating an exemplary method for
combining calls to modules through an interface according to
one embodiment of the disclosure. A method. 200 begins at
block 202 with the emulated environment receiving a first call
to a module located outside the emulated environment. At
block 204, the emulated environment recognizes the first call
as a call possibly having subsequent related calls, and the
emulated environment delays execution of the first call. At
block 206, a second call is received for the module located
outside the emulated environment. At block 208, the first call
and the second call are combined into a single combined call.
At block 210, the combined call is executed. Thus, the num-
ber of calls to the module located outside the emulated envi-
ronment is reduced by combining calls.

An emulated environment may have a table of calls used
for determining when a first call may have a possible related
second call at block 204. Alternatively, software executing in
the emulated environment may have functions that issue two
or more calls in a combined call. In this embodiment, there
may be no delay in executing the first call while waiting for
the second call to execute the combined call.

FIG. 3 is a flow chart illustrating an exemplary method for
combining calls to modules through an interface according to
another embodiment of the disclosure. A method 300 begins
at block 302 with providing an interface for an application
executing in an emulated environment to access a module in
a host operating system. For example, in an embodiment, the
application accesses a security module in the host operating
system through calls to the interface. The method 300 may
include, at block 304, the option of receiving an input param-
eter at the application. For example, in one embodiment, an
input parameter may be received at block 304 that may be

US 9,317,703 B2

9

used by calls from an application to a module. According to
another embodiment, an input parameter may not be received
atblock 304, in which case the method 300 may proceed from
block 302 to block 306 via path 312. At block 306, two or
more related calls to the module are identified, and the two or
more related calls are combined into a single call at block 308.
At block 310, the single combined call is executed by the
module in the host operating system to perform the two or
more related calls.

According to one embodiment, the module external to the
emulated environment receiving the calls may be a crypto-
graphic module. For example, when an application in the
emulated environment is communicating through a secure
shell (SSH) protocol, the application may make a number of
calls to the cryptographic module for performing security-
related tasks, such as generating keys and performing encryp-
tion. Certain calls to the cryptographic module are likely to be
followed by certain other calls. The predictable order of calls
to the cryptographic module may be used to combine calls to
the cryptographic module. For example, calls to produce cli-
ent-to-server keys are likely to be followed by calls to produce
server-to-client keys. As another example, calls to generate a
message authentication code (MAC) on a message are likely
to be followed by a call to encrypt the message.

In one embodiment, the application executing in the emu-
lated environment may be the Clear Path MCP and the host
operating system may be Windows. When the Clear Path
MCP system is processing SSH communication, the system
may access a number of interfaces for processing calls to the
cryptographic module of the host operating system. Each of
the interfaces may combine multiple calls to the crypto-
graphic module into a single combined call.

FIG. 4 is a block diagram illustrating multiple interfaces to
a cryptographic module for combining calls according to one
embodiment of the disclosure. An apparatus 400 includes a
host operating system 402. An application 410 executes
within an emulated environment 408 within the host operat-
ing system 402. A number of interfaces 406a-c are available
to process calls between the application 410 and a crypto-
graphic module 404. For example, each of the interfaces
406a-c may execute two or more related calls to the crypto-
graphic module 404 while incurring the expense of only one
call by combining the two or more related calls.

The interface 406a may be a McpSSHSetUpCiphersAnd-
Macslnterface for combining calls related to setting up an
SSH session. For example, the interface 4064, may combine
calls to CreateHash, GetHashValue, and CreateCipher func-
tions. According to one embodiment, six calls may be com-
bined to a single call. The six calls may include: a call on
CreateHash, HashData, and GetHashValue to produce the
initial client-to-server initialization vector (IV); a call on Cre-
ateHash, HashData, and GetHashValue to produce the initial
server-to-client 1V; a call on CreateHash, HashData, and
GetHashValueto produce the client-to-server encryption key;
a call on CreateHash, HashData, and GetHashValue to pro-
duce the server-to-client encryption key; a call on Create-
Hash, HashData, and GetHashValue to produce the client-to-
server MAC key; and a call on CreateHash, Hashdata, and
GetHashValue to produce the server-to-client MAC key.

The interface 406a may also combine calls to a CreateCi-
pher function. For example, two calls may be combined into
a single call including: a call to CreateCipher to create the
client-to-server cipher using the client-to-server encryption
key; and a call to CreateCipher to create the server-to-client
cipher using the server-to-client encryption key.

In another example, the interface 4064 may combine calls
to a CreateHash function. For example, two calls may be

25

30

40

45

65

10

combined into a single call including: a call to CreateHash to
create a client-to-server MAC using the client-to-server MAC
key; and a call to CreateHash to create a server-to-client MAC
using the server-to-client MAC key.

The interface 4065 may be a McpSSHEncryptAndMac
interface for combining calls related to communications over
the SSH protocol. For example, calls to an EncryptData func-
tion, a HashData function, and a GetHashValue function may
be combined into a single call through the interface 4064.

The interface 406¢ may be a McpSSHStoreHostKeyAnd-
Certificate interface for combining calls related to managing
acommunications session for the SSH protocol. For example,
calls to an ImportPublicKey function, an OpenCertificateSt-
ore function, and a StoreCertificate function may be com-
bined into a single call through the interface 406c¢.

Although not shown in FIG. 4, additional interfaces 406
may be provided between the application 410 and the cryp-
tographic module 404 to execute other combinations of calls.
For example, other interfaces may include: a McpCryptGen-
DHPublicValue interface for generating a Diffie-Hellman
key; a McpCryptGenDHSharedSecret interface for generat-
ing shared secrets; a McpSSHHashAndSign interface for cal-
culating a hash and a signature for a message; a McpSSH-
HashAndVerifySignature interface for generating an
exchange hash and verifying the server’s signature of the
hash; and a McpSSHDecryptAndVeriftyMac interface for
decrypting and ver ng a MAC.

FIG. 5 is a block diagram illustrating more interfaces to a
cryptographic module for combining calls according to
another embodiment of the disclosure. An apparatus 500 may
include a host operating system 502. An application 510 may
execute within an emulated environment 508 within the host
operating system 502. Interfaces 506a-506¢ may be available
to process calls between the application 510 and a crypto-
graphic module 504. For example, each of the interfaces
506a-506c may execute two or more related calls to the cryp-
tographic module 504 by combining the two or more related
calls. This may reduce the overhead in processing calls
between the application 510 and the cryptographic module
504.

According to an embodiment, the interface 506a may be a
McpTESetUpTapeEncryption interface for combining calls
related to setting up secure media encryption. In some
embodiments, the application 510 may receive an input
parameter that identifies an initialization vector generation
algorithm for setting up secure media encryption and/or
decryption and/or for performing secure media encryption
and/or decryption, and some of the combined calls related to
secure media encryption and/or decryption may be associated
or based, at least in part; on the received input parameter. For
example, the interface 5064 may combine at least two of six
or more calls related to setting up secure media encryption
into a single call. The calls may include: a call to create a
cryptography context; a call to randomly generate an encryp-
tion key; a call to compute a hash subkey; a call to store the
computed hash subkey in the cryptography context; a call to
compute an initialization vector; and a call to create a cipher
instance, in which a cipher instance initialization vector is
initialized to the computed initialization vector. The call to
randomly generate an encryption key and/or the call to com-
pute an initialization vector may be based, at least in part; on
the received input parameter. According to an embodiment,
the cryptography context may include security data relevant
to a connection and may contain information such as a com-
munication session key and the duration of the communica-
tion session. In one embodiment, the cipher instance may be
the cryptographic algorithm used to encrypt data, such as by

US 9,317,703 B2

11

transforming plaintext into ciphertext using an encryption
key. In some embodiments, the cryptography context may
store the cipher instance, a handle to the encryption key, and
a handle to the hash subkey.

In another embodiment, the calls related to setting up
secure media encryption that the interface 5064 may combine
into a single call may also include: a call to choose a machine
key from a plurality of machine keys; a call to format a binary
large object (BLOB); and a call to encrypt the BLOB using
the chosen machine key. According to an embodiment, a
machine key may be a key that identifies a particular server in
a host operating system 502, and a plurality of machine keys
may be used to differentiate servers within the host operating
system 502. In one embodiment, the BLOB may be written to
the media and may include information associated with at
least one of a media encryption version, a BLOB version, the
received input parameter, a length of the encryption key; the
randomly generated encryption key, and a hash of other con-
tents in the BLOB. In one embodiment, the entire BLOB,
including the hash, may be encrypted before being written to
the media.

According to an embodiment, the initialization vector gen-
eration algorithm identified by the input parameter may be
one in which the initialization vector generation algorithm
generates a different initialization vector for each distinct set
of input data to be encrypted. In some embodiments, the
initialization vector generation algorithm may be an
encrypted salt-sector initialization vector (ESSIV) algorithm.

In another embodiment, the application 510 may also
include functionality to identify the type or mode of encryp-
tion and/or decryption. For example, the application 510 may
receive input from a user that identifies the type or mode of
encryption and/or decryption or the application 510 may
include internal logic that identifies the type or mode of
encryption/decryption to be setup or performed. In one
embodiment, the encryption/decryption mode may be iden-
tified to be a cipher-block chaining (CBC) encryption/de-
cryption mode. The identification of the encryption/decryp-
tion mode to be setup or performed may also specify the type
ofinitialization vector generation to use for encryption and/or
decryption. For example, in one embodiment, the identified
type of encryption/decryption may indicate that a single ini-
tialization vector be used for all input data to be encrypted/
decrypted, while in another embodiment, the identified type
of encryption/decryption may indicate that a different initial-
ization vector should be generated for each distinct set of
input data to be encrypted/decrypted. In some embodiments,
an ESSIV algorithm may be used, as discussed above, by a
cipher instance to generate a different initialization vector for
each distinct set of input data to be encrypted/decrypted,
while in other embodiments, the cipher instance may be an
Advanced Encryption Standard in Galois Counter Mode
(AES-GCM), which generates a different initialization vector
for each distinct set of input data to be encrypted/decrypted.
For ESSIV, the algorithm ID may be referred to as an input
parameter to the application and it is mentioned as part of the
BLOB contents. The same is true in the case of AES-GCM:
the algorithm ID may be passed in as a parameter and is
included in the BLOB. For example, according to another
embodiment, the interface 5064 may combine at least two of
five or more calls related to setting up secure media encryp-
tion into a single call. The calls may include: a call to create a
cryptography context; a call to randomly generate an encryp-
tion key; a call to compute a hash subkey; a call to create an
AES-GCM cipher instance; and a call to store the AES-GCM
cipher instance and the computed hash subkey in the cryp-
tography context. In addition to storing the AES-GCM cipher

25

35

40

45

55

12

instance, the cryptography context may also store a handle to
the encryption key, and a handle to the hash subkey. The
randomly generated encryption key may include a 256-bit
AES key.

The calls related to setting up secure media encryption that
the interface 506a may combine into a single call may also
include: a call to choose a machine key from a plurality of
machine keys; a call to format a BLOB; a call to compute a
hash of the BLOB; a call to append the hash of the BLOB to
the BLOB; and a call to encrypt the BLOB using the chosen
machine key. The BLOB may be written to the media and may
include information associated with at least one of a media
encryption version, a BLOB version, a length of the encryp-
tion key, a hash of other contents in the BLOB, the received
input parameter, and the randomly generated encryption key.

After the interface 506a executes two or more related calls
to the cryptographic module 504 by combining two or more
related calls, different values may be returned. For example, a
machine key name, handles to the cryptography context, an
encryption key, and/or a cipher may be returned.

Although not specified in FIG. 5, multiple interfaces,
including interfaces 506a-506¢ and additional interfaces (not
shown), may be provided between the application 510 and the
cryptographic module 504 to execute a variety of combina-
tions of calls. For example, interface 506a may be a McpTE-
SetUpTapeEncryption interface for combining calls related
to setting up secure media encryption, as discussed above. As
another example, interface 5065 may be a McpTESetUpTa-
peDecryption interface for combining calls related to setting
up secure media decryption. For decryption, the interface
5065 may combine at least two of five or more calls related to
setting up secure media decryption into a single call. The calls
may include: a call to create a cryptography context; a call to
decrypt a BLOB using a machine key to obtain an encryption
key from the decrypted BLOB; a call to compute an initial-
ization vector; a call to create a cipher instance; and a call to
set an encryption key associated with the cipher instance to
the obtained encryption key from the decrypted BLOB and an
initialization vector associated with the cipher instance to the
computed initialization vector. Certain calls may be based, at
least in part, on the received input parameter that identifies an
initialization vector generation algorithm, such as the call to
compute the initialization vector.

In another embodiment, interface 506¢ may be a
McpCryptEncryptUpdatelnPlace interface for combining
calls related to securely encrypting media. For example, the
interface 506¢ may combine at least two of four or more calls
related to secure media encryption into a single call. The calls
may include: a call to randomly generate an initialization
vector; a call to compute an encryption of data; a call to format
a BLOB; and a call to write the BLOB to the media. In some
embodiments, the encryption of data may be computed using
an AES-GCM encryption cipher. The BLOB may include
information associated with at least one of a media encryption
version, a BLOB version, a length of the encrypted data, an
input parameter that identifies an initialization vector genera-
tion algorithm, a tag value, an initialization vector, and the
encrypted data. In other embodiments, the BLOB may also
include information associated with a SHA-256 hash of the
media encryption version, the BLOB version, the length of
the encrypted data, the input parameter that identifies an
initialization vector generation algorithm, and the initializa-
tion vector.

In yet another embodiment, an additional interface (not
shown) to the interfaces 506a-c may be a McpCryptDecryp-
tUpdatelnPlace interface for combining calls related to
securely decrypting media. For example, the interface may

US 9,317,703 B2

13

combine at least two of four or more calls related to secure
media decryption into a single call. The calls may include: a
call to verify an encryption cipher used to encrypt data; a call
to verify a hash associated with the encryption of the data; a
call to obtain a tag value associated with the encryption of the
data and an initialization vector; and a call to decrypt the data
using a decryption cipher. The encryption cipher used to
encrypt the data may be identified to verify that it is an
AES-GCM encryption cipher, and the decryption cipher may
be used to decrypt the data may also be an AES-GCM decryp-
tion cipher. According to another embodiment, a tag value
may be used to authenticate a message or some data. Accord-
ing to one embodiment, the application may also include
functionality to read the encrypted data from media prior to
identifying two or more related calls and/or to receive an error
if the tag value associated with the encryption of the data
indicates an authentication failure. In some embodiments,
encryption, such as the encryption disclosed with reference to
the McpCryptEncryptUpdatelnPlace interface, and decryp-
tion may use additional authentication data to encrypt and
decrypt. The additional authentication data may include the
number of the input data being encrypted, the record or block
number within the input being encrypted, and the name of the
media. In one embodiment, the authenticated data is the tag
value.

In some embodiments, an additional interface (not shown)
to the interfaces 506a-c may be a McpCryptEncryptlnitialize
interface for combining calls related to initializing an encrypt
cipher for a subsequent file on the media or a McpCryptDe-
cryptlnitialize interface for combining calls related to initial-
izing a decrypt cipher for a subsequent file on the media.

FIG. 6 illustrates one embodiment of a system 600 for an
information system, such as a system for executing programs
in an emulated environment. The system 600 may include a
server 602, a data storage device 606, a network 608, and a
user interface device 610. The server 602 may be a dedicated
server or one server in a cloud computing system. In a further
embodiment, the system 600 may include a storage controller
604, or storage server configured to manage data communi-
cations between the data storage device 606 and the server
602 or other components in communication with the network
608. In an alternative embodiment, the storage controller 604
may be coupled to the network 608.

In one embodiment, the user interface device 610 is
referred to broadly and is intended to encompass a suitable
processor-based device such as a desktop computer, a laptop
computer, a personal digital assistant (PDA) or tablet com-
puter, a smartphone or other a mobile communication device
having access to the network 608. When the device 610 is a
mobile device, sensors (not shown), such as a camera or
accelerometer, may be embedded in the device 610. When the
device 610 is a desktop computer the sensors may be embed-
ded in an attachment (not shown) to the device 610. In a
further embodiment, the user interface device 610 may access
the Internet or other wide area or local area network to access
aweb application or web service hosted by the server 602 and
provide a user interface for enabling a user to enter or receive
information.

The network 608 may facilitate communications of data,
such as authentication information, between the server 602
and the user interface device 610. The network 608 may
include any type of communications network including, but
not limited to, a direct PC-to-PC connection, a local area
network (LAN), a wide area network (WAN), a modem-to-
modem connection, the Internet, a combination of the above,
or any other communications network now known or later

10

15

20

25

30

35

40

45

50

55

60

65

14

developed within the networking arts which permits two or
more computers to communicate, one with another.

In one embodiment, the user interface device 610 accesses
the server 602 through an intermediate server (not shown).
For example, in a cloud application the user interface device
610 may access an application server. The application server
fulfills requests from the user interface device 610 by access-
ing a database management system (DBMS), which stores
authentication information and associated action challenges.
In this embodiment, the user interface device 610 may be a
computer or phone executing a Java application making
requests to a JBOSS server executing on a Linux server,
which fulfills the requests by accessing a relational database
management system (RDMS) on a mainframe server.

FIG. 7 illustrates a computer system 700 adapted according
to certain embodiments of the server 602 and/or the user
interface device 610. The central processing unit (“CPU”)
702 is coupled to the system bus 704. The CPU 702 may be a
general purpose CPU or microprocessor, graphics processing
unit (“GPU”), and/or microcontroller. The present embodi-
ments are not restricted by the architecture of the CPU 702 so
long as the CPU 702, whether directly or indirectly, supports
the modules and operations as described herein. The CPU 702
may execute the various logical instructions according to the
present embodiments.

The computer system 700 also may include random access
memory (RAM) 708, which may be synchronous RAM
(SRAM), dynamic RAM (DRAM), and/or synchronous
dynamic RAM (SDRAM). The computer system 700 may
utilize RAM 708 to store the various data structures used by
a software application. The computer system 700 may also
include read only memory (ROM) 706 which may be PROM,
EPROM, EEPROM, optical storage, or the like. The ROM
may store configuration information for booting the computer
system 700. The RAM 708 and the ROM 706 hold user and
system data.

The computer system 700 may also include an input/output
(I/0) adapter 710, a communications adapter 714, a user
interface adapter 716, and a display adapter 722. The 1/O
adapter 710 and/or the user interface adapter 716 may, in
certain embodiments, enable a user to interact with the com-
puter system 700. In a further embodiment, the display
adapter 722 may display a graphical user interface (GUI)
associated with a software or web-based application on a
display device 724, such as a monitor or touch screen.

The I/O adapter 710 may couple one or more storage
devices 712, such as one or more of a hard drive, a flash drive,
a compact disc (CD) drive, a floppy disk drive, and a tape
drive, to the computer system 700. The communications
adapter 714 may be adapted to couple the computer system
700 to the network 608, which may be one or more of a LAN,
WAN, and/or the Internet. The communications adapter 714
may also be adapted to couple the computer system 700 to
other networks such as a global positioning system (GPS) or
a Bluetooth network. The user interface adapter 716 couples
user input devices, such as a keyboard 720, a pointing device
718, and/or a touch screen (not shown) to the computer sys-
tem 700. The keyboard 720 may be an on-screen keyboard
displayed on a touch panel. Additional devices (not shown)
such as a camera, microphone, video camera, accelerometer,
compass, and or a gyroscope may be coupled to the user
interface adapter 716. The display adapter 722 may be driven
by the CPU 702 to control the display on the display device
724.

The applications of the present disclosure are not limited to
the architecture of computer system 700. Rather the computer
system 700 is provided as an example of one type of comput-

US 9,317,703 B2

15

ing device that may be adapted to perform the functions of a
server 602 and/or the user interface device 610. For example,
any suitable processor-based device may be utilized includ-
ing, without limitation, personal data assistants (PDAs), tab-
let computers, smartphones, computer game consoles, and
multi-processor servers. Moreover, the systems and methods
of'the present disclosure may be implemented on application
specific integrated circuits (ASIC), very large scale integrated
(VLSI) circuits, or other circuitry. In fact, persons of ordinary
skill in the art may utilize any number of suitable structures
capable of executing logical operations according to the
described embodiments.

If implemented in firmware and/or software, the functions
described above may be stored as one or more instructions or
code on a computer-readable medium. Examples include
non-transitory computer-readable media encoded with a data
structure and computer-readable media encoded with a com-
puter program. Computer-readable media includes physical
computer storage media. A storage medium may be any avail-
able medium that can be accessed by a computer. By way of
example, and not limitation, such computer-readable media
can comprise RAM, ROM, EEPROM, CD-ROM or other
optical disk storage, magnetic disk storage or other magnetic
storage devices, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer; disk and
disc, as used herein, includes compact disc (CD), laser disc,
optical disc, digital versatile disc (DVD), floppy disk and
blu-ray disc where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combina-
tions of the above should also be included within the scope of
computer-readable media.

In addition to storage on computer readable medium,
instructions and/or data may be provided as signals on trans-
mission media included in a communication apparatus. For
example, a communication apparatus may include a trans-
ceiver having signals indicative of instructions and data. The
instructions and data are configured to cause one or more
processors to implement the functions outlined in the claims.

Although the present disclosure and its advantages have
been described in detail, it should be understood that various
changes, substitutions and alterations can be made herein
without departing from the spirit and scope of the disclosure
as defined by the appended claims. Moreover, the scope of the
present application is not intended to be limited to the par-
ticular embodiments of the process, machine, manufacture,
composition of matter, means, methods and steps described in
the specification. As one of ordinary skill in the art will
readily appreciate from the present disclosure, machines,
manufacture, compositions of matter, means, methods, or
steps, presently existing or later to be developed that perform
substantially the same function or achieve substantially the
same result as the corresponding embodiments described
herein may be utilized according to the present disclosure.
Accordingly, the appended claims are intended to include
within their scope such processes, machines, manufacture,
compositions of matter, means, methods, or steps.

What is claimed is:

1. A method for setting up secure media encryption in one
call, comprising:

providing an interface for an application executing in an

emulated environment of a host operating system, in
which the application accesses a security module in the
host operating system through calls to the interface;
identifying two or more related calls, from the application
to the module, for setting up secure media encryption,
the two or more related calls comprising at least one of:

10

15

20

25

30

35

40

45

50

55

60

65

16

a call to create a cryptography context;

a call to randomly generate an encryption key;

a call to compute a hash subkey;

a call to store the computed hash subkey in the cryptog-
raphy context;

a call to compute an initialization vector; and

a call to create a cipher instance, in which a cipher
instance initialization vector is initialized to the com-
puted initialization vector;

combining the two or more related calls into a single call;

and

executing the single combined call to the module of the

host operating system to perform the two or more related
calls.

2. The method of claim 1, further comprising:

identifying the type of encryption to be setup, wherein

identifying the type of encryption indicates whether a
different initialization vector should be generated for
each input data to be encrypted; and

receiving an input parameter, at the application, that iden-

tifies an initialization vector generation algorithm,
wherein at least one of the two or more related calls is
based, at least in part, on the received input parameter.

3. The method of claim 2, in which the initialization vector
generation algorithm generates a different initialization vec-
tor for each input data to be encrypted.

4. The method of claim 2, in which the initialization vector
generation algorithm comprises an encrypted salt-sector ini-
tialization vector (ESSIV) algorithm.

5. The method of claim 2, in which the two or more related
calls comprise at least one of:

a call to choose a machine key from a plurality of machine

keys;

a call to format a binary large object (BLOB); and

a call to encrypt the BLOB using the chosen machine key.

6. The method of claim 5, in which the BLOB is written to
the media and comprises information associated with at least
one of:

a media encryption version;

a BLOB version;

a length of the encryption key;

the received input parameter;

the randomly generated encryption key; and

a hash of at least one of the information in the BLOB.

7. The method of claim 1, in which the module comprises
a cryptographic module.

8. A computer program product for setting up secure media
encryption in one call, comprising:

a non-transitory computer-readable medium comprising:

code to provide an interface for an application executing
in an emulated environment of a host operating sys-
tem, in which the application accesses a security mod-
ule in the host operating system through calls to the
interface;
code to identify two or more related calls, from the
application to the module, for setting up secure media
encryption, the two or more related calls comprising
at least two of:
a call to create a cryptography context;
a call to randomly generate an encryption key;
a call to compute a hash subkey;
a call to store the computed hash subkey in the cryp-
tography context;
a call to compute an initialization vector; and
a call to create a cipher instance, in which a cipher
instance initialization vector is initialized to the
computed initialization vector;

US 9,317,703 B2

17

code to combine the two or more related calls into a
single call; and

code to execute the single combined call to the module
of the host operating system to perform the two or
more related calls.

9. The computer program product of claim 8, in which the
medium further comprises:

code to identify the type of encryption to be setup, wherein

identifying the type of encryption indicates whether a
different initialization vector should be generated for
each input data to be encrypted; and

code to receive an input parameter, at the application, that

identities an initialization vector generation algorithm,
wherein at least one of the two or more calls is based, at
least in part, on the received input parameter.

10. The computer program product of claim 9, in which the
initialization vector generation algorithm generates a difter-
ent initialization vector for each input data to be encrypted.

11. The computer program product of claim 9, in which the
initialization vector generation algorithm comprises an
encrypted salt-sector initialization vector (ESSIV) algorithm.

12. The computer program product of claim 9, in which the
two or more related calls comprise:

a call to choose a machine key from a plurality of machine

keys;

a call to format a binary large object (BLOB); and

a call to encrypt the BLOB using the chosen machine key.

13. The computer program product of claim 12, in which
the BLOB is written to the media and comprises information
associated with at least one of:

a media encryption version;

a BLOB version;

a length of the encryption key;

the received input parameter;

the randomly generated encryption key; and

a hash of at least one of the information in the BLOB.

14. The computer program product of claim 8, in which the
module comprises a cryptographic module.

15. An apparatus for setting up secure media encryption in
one call, comprising:

a processor; and

amemory coupled to the processor, in which the processor

is configured:

to provide an interface for an application executing in an
emulated environment of a host operating system, in
which the application accesses a security module in
the host operating system through calls to the inter-
face;

5

10

20

25

30

35

40

45

18

to identify two or more related calls, from the applica-
tion to the module, for setting up secure media
encryption, the two or more related calls comprising
at least one of:

a call to create a cryptography context;

a call to randomly generate an encryption key;

a call to compute a hash subkey;

a call to store the computed hash subkey in the cryp-
tography context;

a call to compute an initialization vector;

a call to create a cipher instance, in which a cipher
instance initialization vector is initialized to the
computed initialization vector; and

a call to choose a machine key from a plurality of
machine keys;

to combine the two or more related calls into a single
call; and

to execute the single combined call to the module of the
host operating system to perform the two or more
related calls.

16. The apparatus of claim 15, in which the processor is
further configured:

to identify the type of encryption to be setup, wherein

identifying the type of encryption indicates whether a
different initialization vector should be generated for
each input data to be encrypted; and

to receive an input parameter, at the application, that iden-

tifies an initialization vector generation algorithm that
generates a different initialization vector for each input
data to be encrypted, wherein at least one of the two or
more calls is based, at least in part, on the received input
parameter.

17. The apparatus of claim 16, in which the initialization
vector generation algorithm comprises an encrypted salt-sec-
tor initialization vector (ESSIV) algorithm.

18. The apparatus of claim 16, in which the two or more
related calls comprise:

a call to format a binary large object (BLOB); and

a call to encrypt the BLOB using the chosen machine key.

19. The apparatus of claim 18, in which the BLOB is
written to the media and comprises information associated
with at least one of:

a media encryption version;

a BLOB version;

a length of the encryption key;

the received input parameter;

the randomly generated encryption key; and

a hash of at least one of the information in the BLOB.

20. The apparatus of claim 15, in which the module com-
prises a cryptographic module.

#* #* #* #* #*

